
Writing and Debugging Writing and Debugging
EBC Driver with TipsEBC Driver with Tips

Fang HuaFang Hua
UEFI DevelopmentUEFI Development

Intel Intel

Copyright Copyright ©© 2007 Intel Corporation2007 Intel Corporation

2

AgendaAgenda

A Brief History of EBCA Brief History of EBC
EBC OverviewEBC Overview
Designing and Implementing EBC DriversDesigning and Implementing EBC Drivers
Testing and Debugging EBC DriversTesting and Debugging EBC Drivers
EBC Performance GuidelinesEBC Performance Guidelines
SummarySummary

3

Motivation and GoalsMotivation and Goals

Option ROM Cost w/ Multiple ImagesOption ROM Cost w/ Multiple Images
–– For EFI 1.02 this was Itanium and IAFor EFI 1.02 this was Itanium and IA--3232
–– Costs continue to increase as EFI adds CPU architecturesCosts continue to increase as EFI adds CPU architectures

Design GoalsDesign Goals
–– Simple instruction setSimple instruction set

–– Lightweight efficient interpreterLightweight efficient interpreter
–– Share a common call stackShare a common call stack

–– Low overhead on callsLow overhead on calls
–– Share all data structures. Share all data structures.

–– No translations required on EBC No translations required on EBC native native
transitionstransitions

–– No library dependenciesNo library dependencies
–– No C coding restrictionsNo C coding restrictions

A Brief History of EBC

4

OptionsOptions
JAVA and ForthJAVA and Forth
–– Rejected due to large librariesRejected due to large libraries

IAIA--32 Interpreter32 Interpreter
–– Rejected due to the size/complexity of the interpreterRejected due to the size/complexity of the interpreter
–– Requires updates for new IARequires updates for new IA--32 instructions32 instructions

Remote Procedure Call (RPC) like mechanismRemote Procedure Call (RPC) like mechanism
–– PRO: Can handle mixed CPU arch sizesPRO: Can handle mixed CPU arch sizes
–– CON: Does not support all C constructsCON: Does not support all C constructs
–– CON: Function call overhead to transposeCON: Function call overhead to transpose
–– CON: Difficult to share data structuresCON: Difficult to share data structures

–– EFI System Table, Boot Services Table, Protocol InterfacesEFI System Table, Boot Services Table, Protocol Interfaces
–– EFI 1.02 Specification included some supportEFI 1.02 Specification included some support

EBC Instruction Set with Natural AddressingEBC Instruction Set with Natural Addressing
–– PRO: Simple instruction set, no library dependenciesPRO: Simple instruction set, no library dependencies
–– PRO: Share common stack and data structuresPRO: Share common stack and data structures
–– CON: Minor C coding restrictionsCON: Minor C coding restrictions

A Brief History of EBC

5

AgendaAgenda

A Brief History of EBCA Brief History of EBC
EBC OverviewEBC Overview
Designing and Implementing EBC DriversDesigning and Implementing EBC Drivers
Testing and Debugging EBC DriversTesting and Debugging EBC Drivers
EBC Performance GuidelinesEBC Performance Guidelines
SummarySummary

6

typedeftypedef structstruct {{
UINT64 UINT64 BufferLengthBufferLength;;
VOID *Buffer;VOID *Buffer;
UINT16 Checksum;UINT16 Checksum;

} MY_STRUCT;} MY_STRUCT;

All fields are fixed size except INTN, UINTN, and pointersAll fields are fixed size except INTN, UINTN, and pointers
Byte Offset = C + N * Size of pointer in bytesByte Offset = C + N * Size of pointer in bytes
–– BufferLengthBufferLength:: Offset = 0 + 0 * Offset = 0 + 0 * sizeof(VOIDsizeof(VOID *) = 0 or 0*) = 0 or 0
–– Buffer:Buffer: Offset = 8 + 0 * Offset = 8 + 0 * sizeof(VOIDsizeof(VOID *) = 8 or 8*) = 8 or 8
–– ChecksumChecksum Offset = 8 + 1 * Offset = 8 + 1 * sizeof(VOIDsizeof(VOID *) = 12 or 16*) = 12 or 16

Encode both C and N into the instructionEncode both C and N into the instruction
–– CC and N replace traditional offset field for address modesand N replace traditional offset field for address modes

Natural AddressingNatural Addressing

FieldField
BufferLengthBufferLength
BufferBuffer
ChecksumChecksum

00 00
3232--bitbit 6464--bitbit

1212 1616
88 88

Byte OffsetByte Offset

EBC Overview

7

Executing EBC ImagesExecuting EBC Images

EBC Interpreter EBC Interpreter
–– Implemented as a UEFI DriverImplemented as a UEFI Driver
–– Typically stored in system FLASH (~10 KB compressed)Typically stored in system FLASH (~10 KB compressed)

ThunksThunks
–– Native code that transfers control to/from EBC functionsNative code that transfers control to/from EBC functions
–– Translates from native CPU ABI to EBC ABI (stack based)Translates from native CPU ABI to EBC ABI (stack based)
–– Translates from EBC ABI (stack based) to native CPU ABITranslates from EBC ABI (stack based) to native CPU ABI

EBC executables use PE/COFF image formatEBC executables use PE/COFF image format
EBC executables loaded with EFI Boot Service EBC executables loaded with EFI Boot Service LoadImageLoadImage()()
–– LoadImageLoadImage() must support native and EBC images() must support native and EBC images
–– ThunkThunk to image entry point created by to image entry point created by LoadImageLoadImage()()

EBC executables started with EFI Boot Service EBC executables started with EFI Boot Service StartImageStartImage()()
–– Calls entry point Calls entry point thunkthunk

ThunksThunks to exported functions created dynamically to exported functions created dynamically
–– Startup code contains BREAK instructions to create Startup code contains BREAK instructions to create thunksthunks
–– Function pointer references detected by compilerFunction pointer references detected by compiler

–– Assignment or static initialization of protocol functionsAssignment or static initialization of protocol functions

EBC Overview

8

EBC Images in PCI Option ROMsEBC Images in PCI Option ROMs

PCI Bus Driver discovers PCI Option ROMsPCI Bus Driver discovers PCI Option ROMs
PCI Option ROMs support multiple UEFI ImagesPCI Option ROMs support multiple UEFI Images
–– UEFI Images may be compressedUEFI Images may be compressed

UEFI images dispatched by PCI Bus DriverUEFI images dispatched by PCI Bus Driver
–– NonNon--UEFI images, including legacy, are ignoredUEFI images, including legacy, are ignored
–– UEFI Drivers dispatch in the order they appearUEFI Drivers dispatch in the order they appear
–– PCI Bus Driver calls PCI Bus Driver calls LoadImageLoadImage() and () and StartImageStartImage()()

Bus Specific Driver Override ProtocolBus Specific Driver Override Protocol
–– Produced by PCI Bus DriverProduced by PCI Bus Driver
–– Consumed by EFI Boot Service Consumed by EFI Boot Service ConnectControllerConnectController()()
–– Specifies priority order of Driver Binding ProtocolsSpecifies priority order of Driver Binding Protocols

RecommendationsRecommendations
–– Legacy Option ROM image firstLegacy Option ROM image first
–– Native UEFI Drivers nextNative UEFI Drivers next
–– EBC UEFI Drivers lastEBC UEFI Drivers last
–– Compress driver imagesCompress driver images

EBC Overview

9

AgendaAgenda

A Brief History of EBCA Brief History of EBC
EBC OverviewEBC Overview
Designing and Implementing EBC DriversDesigning and Implementing EBC Drivers
Testing and Debugging EBC DriversTesting and Debugging EBC Drivers
EBC Performance GuidelinesEBC Performance Guidelines
SummarySummary

10

When to use EBCWhen to use EBC

AddAdd--in Video Adaptersin Video Adapters
AddAdd--in Disk Controllersin Disk Controllers
Not used for Not used for NICsNICs (UNDI)(UNDI)
––UNDI is runtime which must be native.UNDI is runtime which must be native.
Reduce driver image footprintReduce driver image footprint
––Adapters supporting multiple CPU types Adapters supporting multiple CPU types

–– IAIA--32 and IA32 and IA--6464
–– IAIA--32 and Intel32 and Intel®® 6464
–– IntelIntel®® 64 and IA64 and IA--6464
–– IAIA--32, Intel32, Intel®® 64 and IA64 and IA--64 64
–– Reduce adapter SKUsReduce adapter SKUs

Designing and Implementing EFI Drivers

11

EBC Development ChecklistEBC Development Checklist

Implement and Test Native DriverImplement and Test Native Driver
EBC Development EnvironmentsEBC Development Environments
EBC Target EnvironmentsEBC Target Environments
Driver Design StepsDriver Design Steps
Driver Implementation StepsDriver Implementation Steps
Portability ConsiderationsPortability Considerations

Designing and Implementing EFI Drivers

12

EBC Development EnvironmentsEBC Development Environments

EDI on EFI and Framework Open source Community WebsiteEDI on EFI and Framework Open source Community Website
https://edk.tianocore.org/files/documents/16/313/Edkhttps://edk.tianocore.org/files/documents/16/313/Edk--DevDev--SnapshotSnapshot--
20061228.zip20061228.zip
–– Config.envConfig.env: EFI_GENERATE_INTERMEDIATE_FILE = YES: EFI_GENERATE_INTERMEDIATE_FILE = YES

IntelIntel®® C Compiler for EFI Byte Code Version 1.2 Build 20040123C Compiler for EFI Byte Code Version 1.2 Build 20040123
–– Common Flags: Common Flags:

–– /W3 /WX //W3 /WX /FAcsFAcs //FaFa
–– http://www3.intel.com/cd/software/products/asmohttp://www3.intel.com/cd/software/products/asmo--

na/eng/compilers/efibc/219678.htmna/eng/compilers/efibc/219678.htm
Microsoft* Linker Version 7.10.3077 and aboveMicrosoft* Linker Version 7.10.3077 and above
–– Common Flags:Common Flags:

–– /MACHINE:EBC /OPT:REF //MACHINE:EBC /OPT:REF /ENTRY:EfiStartENTRY:EfiStart
–– /SUBSYSTEM:EFI_BOOT_SERVICE_DRIVER/SUBSYSTEM:EFI_BOOT_SERVICE_DRIVER
–– EbcLib.libEbcLib.lib

–– Microsoft* Visual Studio .NET 2003Microsoft* Visual Studio .NET 2003
–– Microsoft* Visual Studio 2005Microsoft* Visual Studio 2005
–– Windows* DDK 3790.1830Windows* DDK 3790.1830

Designing and Implementing EFI Drivers

*Other names and brands may be claimed as the property of others*Other names and brands may be claimed as the property of others..

https://edk.tianocore.org/files/documents/16/313/Edk-Dev-Snapshot-20061228.zip
https://edk.tianocore.org/files/documents/16/313/Edk-Dev-Snapshot-20061228.zip
http://www3.intel.com/cd/software/products/asmo-na/eng/compilers/efibc/219678.htm
http://www3.intel.com/cd/software/products/asmo-na/eng/compilers/efibc/219678.htm

13

EBC Target EnvironmentsEBC Target Environments

UEFI Compliant PlatformsUEFI Compliant Platforms
EDK EDK –– DUET PlatformDUET Platform
–– Boots UEFI environment on legacy platformBoots UEFI environment on legacy platform
EDK EDK –– NT32 PlatformNT32 Platform
–– UEFI Emulation environment for WindowsUEFI Emulation environment for Windows
–– Not useful for drivers that touch hardwareNot useful for drivers that touch hardware

Designing and Implementing EFI Drivers

14

Driver Implementation StepsDriver Implementation Steps

Create Driver DirectoryCreate Driver Directory
Design Private Context Data StructureDesign Private Context Data Structure
Add Source Files to Driver DirectoryAdd Source Files to Driver Directory
Add .INF File to Driver DirectoryAdd .INF File to Driver Directory
Add .INF file to .DSC file in Build Add .INF file to .DSC file in Build
DirectoryDirectory
Run Run nmakenmake to build driverto build driver

Designing and Implementing EFI Drivers

DEMO: Build EBC DEMO: Build EBC SampleDriverSampleDriver
DEMO: Build EBC DEMO: Build EBC HelloWorldHelloWorld

15

Portability ConsiderationsPortability Considerations

Do Not Assume Max Number of ChildrenDo Not Assume Max Number of Children
Do Not Use Fixed Memory AddressesDo Not Use Fixed Memory Addresses
Do Not Use AssemblyDo Not Use Assembly
Do Not Use Floating Point ArithmeticDo Not Use Floating Point Arithmetic
Some Minor EBC Porting ConsiderationsSome Minor EBC Porting Considerations
Bus Drivers Should Support Producing 1 Bus Drivers Should Support Producing 1
Child at a time if possible (improves Child at a time if possible (improves
boot performance)boot performance)

Designing and Implementing EFI Drivers

16

Common EBC Source Porting IssuesCommon EBC Source Porting Issues

EfiMainEfiMain() and () and EfiStartEfiStart() are reserved words() are reserved words
Function DeclarationsFunction Declarations
–– Must match Function Prototype if presentMust match Function Prototype if present

–– All parameter types and return typesAll parameter types and return types
PrePre--Init Data StructuresInit Data Structures
–– Function pointer fields must match declarationFunction pointer fields must match declaration
–– Data fields can not reference Data fields can not reference sizeofsizeof()()
–– EFI_STATUS indirectly references EFI_STATUS indirectly references sizeofsizeof() for EBC() for EBC

case statement can not reference case statement can not reference sizeofsizeof()()
–– EFI_STATUS indirectly references EFI_STATUS indirectly references sizeofsizeof() for EBC() for EBC

Designing and Implementing EFI Drivers

DEMO: PortDemo1 PortDemo2DEMO: PortDemo1 PortDemo2

17

Common EBC Execution IssuesCommon EBC Execution Issues

Incorrect result of op between variable and Incorrect result of op between variable and
immediate dataimmediate data
–– Workaround: Type convert immediate data to UINTNWorkaround: Type convert immediate data to UINTN

Incorrect result of arithmetic calculationsIncorrect result of arithmetic calculations
–– INTN and UINT8INTN and UINT8
–– INTN and UINT16INTN and UINT16
–– INTN and UINT32INTN and UINT32
–– UINTN and INT64UINTN and INT64
–– Workaround: Type convert fixed size to naturalWorkaround: Type convert fixed size to natural

Incorrect CMP instruction generationIncorrect CMP instruction generation
–– Workaround: Not an issue if UEFI base types are usedWorkaround: Not an issue if UEFI base types are used

Designing and Implementing EFI Drivers

DEMO: PortDemo3DEMO: PortDemo3

18

AgendaAgenda

A Brief History of EBCA Brief History of EBC
EBC OverviewEBC Overview
Designing and Implementing EBC DriversDesigning and Implementing EBC Drivers
Testing and Debugging EBC DriversTesting and Debugging EBC Drivers
EBC Performance GuidelinesEBC Performance Guidelines
SummarySummary

19

Testing RecommendationsTesting Recommendations

UEFI Self Certification Tests (UEFI Self Certification Tests (SCTsSCTs))
Test Functions with EFI Shell CommandsTest Functions with EFI Shell Commands
Check for Leaks with EFI Shell CommandsCheck for Leaks with EFI Shell Commands
Install EFI Compliant Operating SystemInstall EFI Compliant Operating System
Boot EFI Compliant Operating SystemBoot EFI Compliant Operating System
Debug Macros Identify Critical FailuresDebug Macros Identify Critical Failures
Use Same Techniques on all CPU TypesUse Same Techniques on all CPU Types
––IAIA--32, Itanium32, Itanium®® Processor Family(IAProcessor Family(IA--64), 64),

IntelIntel®® 64, EBC64, EBC

Testing and Debugging EFI Drivers

20

Debug MethodsDebug Methods

DEBUG()/ASSERT() MacrosDEBUG()/ASSERT() Macros
POST CardPOST Card
UART Serial PortUART Serial Port
VGA DisplayVGA Display
EBC DebuggerEBC Debugger

Testing and Debugging EFI Drivers

21

Debug MacrosDebug Macros

ASSERT (Expression)ASSERT (Expression)
––If Expression is FALSE, then print file name and If Expression is FALSE, then print file name and

line number and halt.line number and halt.
ASSERT_EFI_ERROR (Status)ASSERT_EFI_ERROR (Status)
––If Status is not EFI_SUCCESS, then print file If Status is not EFI_SUCCESS, then print file

name and line number and halt.name and line number and halt.
CR (Record, Type, Field, Signature)CR (Record, Type, Field, Signature)
––ASSERT()sASSERT()s if Data Structure Signature does not if Data Structure Signature does not

matchmatch
EFI_BREAKPOINT ()EFI_BREAKPOINT ()
––Generate a CPU break point instructionGenerate a CPU break point instruction

Testing and Debugging EFI Drivers

22

Debug MacrosDebug Macros

DEBUG (DEBUG (ErrorLevelErrorLevel, String, , String, ……))
––Print String if Print String if ErrorLevelErrorLevel is active.is active.

EFI_D_ERROREFI_D_ERROR 0x800000000x80000000

EFI_D_INITEFI_D_INIT 0x000000010x00000001

EFI_D_WARNEFI_D_WARN 0x000000020x00000002

EFI_D_INFOEFI_D_INFO 0x000000400x00000040

EFI_D_BLKIOEFI_D_BLKIO 0x000010000x00001000

EFI_D_UNDIEFI_D_UNDI 0x000100000x00010000

Testing and Debugging EFI Drivers

23

When DEBUG() is not AvailableWhen DEBUG() is not Available

POST Card (I/O 0x80)POST Card (I/O 0x80)
–– PCI Root Bridge I/O ProtocolPCI Root Bridge I/O Protocol
–– PCI I/O ProtocolPCI I/O Protocol

May not work on all platforms
May produce unpredictable results
Must be removed from production drivers

Value = 0x03;
Status = PciIo->Io.Write (

PciIo, // This
EfiPciIoWidthUint8, // Width
EFI_PCI_IO_PASS_THROUGH_BAR, // BAR
0x80, // Offset
1, // Count
&Value // Buffer
);

Testing and Debugging EFI Drivers

24

When DEBUG() is not AvailableWhen DEBUG() is not Available

UART (COM1 I/O 0x3F8UART (COM1 I/O 0x3F8--0x3FF)0x3FF)
UART (Platform Specific MMIO)UART (Platform Specific MMIO)
–– PCI Root Bridge I/O ProtocolPCI Root Bridge I/O Protocol
–– PCI I/O ProtocolPCI I/O Protocol

May not work on all platforms
May produce unpredictable results
Must be removed from production drivers

Hello World

Check Point 1

Check Point 2

Check Point 3

Status = PciIo->PollIo (PciIo, EfiPciIoWidthUint8,
EFI_PCI_IO_PASS_THROUGH_BAR,
0x3FD, 0x20, 0x20, 1000000, &Lsr);

Status = PciIo->Io.Write (PciIo, EfiPciIoWidthUint8,
EFI_PCI_IO_PASS_THROUGH_BAR,
0x3F8, 1, &Data);

Testing and Debugging EFI Drivers

25

When DEBUG() is not AvailableWhen DEBUG() is not Available

VGA (MMIO 0xB8000VGA (MMIO 0xB8000--0xBFFFF)0xBFFFF)
–– PCI Root Bridge I/O ProtocolPCI Root Bridge I/O Protocol
–– PCI I/O ProtocolPCI I/O Protocol

May not work on all platforms
May produce unpredictable results
Must be removed from production drivers

Hello_World

Check_Point_1

Check_Point_2

Check_Point_3

VideoAddress = 0xB8000 + (Row * 80 + Column) * 2;
VideoCharacter = 0x0700 | Character;
Status = PciIo->Mem.Write (PciIo, EfiPciIoWidthUint16,

EFI_PCI_IO_PASS_THROUGH_BAR,
VideoAddress, 1, &VideoCharacter);

Testing and Debugging EFI Drivers

26

EBC Debugger DemoEBC Debugger Demo

Compile with /Compile with /FAcsFAcs and /and /FaFa
–– Generates .COD files with mixed source/Generates .COD files with mixed source/asmasm

Link with /Link with /MAP:mapfileMAP:mapfile
–– Generate .MAP file of functions in EBC driverGenerate .MAP file of functions in EBC driver

Config.envConfig.env
–– EFI_GENERATE_INTERMEDIATE_FILE = YESEFI_GENERATE_INTERMEDIATE_FILE = YES

Testing and Debugging EFI Drivers

DEMO: EBC DebuggerDEMO: EBC Debugger

27

AgendaAgenda

A Brief History of EBCA Brief History of EBC
EBC OverviewEBC Overview
Designing and Implementing EBC DriversDesigning and Implementing EBC Drivers
Testing and Debugging EBC DriversTesting and Debugging EBC Drivers
EBC Performance GuidelinesEBC Performance Guidelines
SummarySummary

28

EBC Performance GuidelinesEBC Performance Guidelines

Do as little work in EBC driver as possibleDo as little work in EBC driver as possible
––Use EFI Boot ServicesUse EFI Boot Services
––Use EFI Runtime ServicesUse EFI Runtime Services
––Use Protocols produced by other driversUse Protocols produced by other drivers
Perform operations at largest size possiblePerform operations at largest size possible

EBC Performance Guidelines

29

EBC Performance GuidelinesEBC Performance Guidelines

EFI Boot ServicesEFI Boot Services
–– CopyMemCopyMem(), (), SetMemSetMem()()

PCI I/O ServicesPCI I/O Services
–– PollMemPollMem() and () and PollIoPollIo()()
–– Mem.ReadMem.Read(), (), Mem.WriteMem.Write(), (), Io.ReadIo.Read(), (), Io.WriteIo.Write()()

–– Supports Buffer, FIFO, and Fill operationsSupports Buffer, FIFO, and Fill operations
–– EfiPciIoWidthUintXEfiPciIoWidthUintX, , EfiPciIoWidthFifoUnitXEfiPciIoWidthFifoUnitX, , EfiPciIoWidthFillUintxEfiPciIoWidthFillUintx

–– Pci.ReadPci.Read() and () and Pci.WritePci.Write()()
–– Use buffer to perform many PCI cycles at onceUse buffer to perform many PCI cycles at once

–– CopyMemCopyMem()()
–– Video scroll operations when HW engine no availableVideo scroll operations when HW engine no available

–– Map(), Map(), UnMapUnMap()()
–– Perform double buffering as required in native codePerform double buffering as required in native code

EBC Performance Guidelines

30

PCI Device DriversPCI Device Drivers

Always Call Always Call PciIoPciIo-->Attributes()>Attributes()
–– Advertises Dual Address Cycle CapabilityAdvertises Dual Address Cycle Capability
–– Save and Enable Attributes in Save and Enable Attributes in Start()Start()
–– Disable Attributes in Disable Attributes in Stop()Stop()
DMA DMA –– Bus Master Write OperationsBus Master Write Operations
–– Must call Must call PciIoPciIo-->Flush()>Flush()
DMA DMA –– Setting Up with Setting Up with PciIoPciIo-->Map()>Map()
–– Do Not Use Returned Do Not Use Returned DeviceAddressDeviceAddress
–– Not all chipsets have 1:1 bus/system mappingsNot all chipsets have 1:1 bus/system mappings

31

PCI Device Drivers PCI Device Drivers –– Start()Start()

Status = PciIo->Attributes(
PciIo,
EfiPciIoAttributeOperationGet,
0,
&ControllerContext->OriginalPciIoAttributes
);

if (EFI_ERROR (Status)) {/* Error Handling */}
Status = PciIo->Attributes(

PciIo,
EfiPciIoAttributeOperationEnable,
(EFI_PCI_IO_ATTRIBUTE_IO |
EFI_PCI_IO_ATTRIBUTE_MEMORY |
EFI_PCI_IO_ATTRIBUTE_BUS_MASTER |
EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE),

0,
NULL
);

if (EFI_ERROR (Status)) {/* Error Handling */}

Save Original and EnableSave Original and Enable

32

PCI Device Drivers PCI Device Drivers –– Stop()Stop()

Status = PciIo->Attributes(
PciIo,
EfiPciIoAttributeOperationSet,
&ControllerContext->OriginalPciIoAttributes
NULL
);

if (EFI_ERROR (Status)) {
// Error Handling

}

Restore OriginalRestore Original

33

Memory TipsMemory Tips

Use Aligned MemoryUse Aligned Memory
––Framework functions will frequently handle all Framework functions will frequently handle all

alignment issues for you.alignment issues for you.
Free all the memory you allocateFree all the memory you allocate

34

Preventing Alignment FaultsPreventing Alignment Faults

VOID
ScsiDeviceNodeInit (

IN OUT SCSI_DEVICE_PATH *ScsiDeviceNode,
IN UINT16 Pun,
IN UINT16 Lun
)

{
ScsiDeviceNode->Scsi.Header.Type = MESSAGING_DEVICE_PATH;
ScsiDeviceNode->Scsi.Header.SubType = MSG_SCSI_DP;
SetDevicePathNodeLength (&ScsiDeviceNode->Scsi.Header,

sizeof(SCSI_DEVICE_PATH));
ScsiDeviceNode->Scsi.Pun = Pun;
ScsiDeviceNode->Scsi.Lun = Lun;

}

BAD

ScsiDeviceNodeScsiDeviceNode may not be alignedmay not be aligned

Demo and Driver Guidelines

35

Preventing Alignment FaultsPreventing Alignment Faults

VOID
ScsiDeviceNodeInit (

IN OUT SCSI_DEVICE_PATH *ScsiDeviceNode,
IN UINT16 Pun,
IN UINT16 Lun
)

{
SCSI_DEVICE_PATH MyDeviceNode;

MyDeviceNode.Scsi.Header.Type = MESSAGING_DEVICE_PATH;
MyDeviceNode.Scsi.Header.SubType = MSG_SCSI_DP;
SetDevicePathNodeLength (&MyDeviceNode.Scsi.Header,

sizeof(SCSI_DEVICE_PATH));
MyDeviceNode.Scsi.Pun = Pun;
MyDeviceNode.Scsi.Lun = Lun;

gBS->CopyMem (ScsiDeviceNode,
&MyDeviceNode,
sizeof(SCSI_DEVICE_PATH));

}

GOOD

gBSgBS-->>CopyMemCopyMem() handles all alignments() handles all alignments
MyDeviceNodeMyDeviceNode is alignedis aligned

36

Tips for existing functionsTips for existing functions

There are many existing utility functions There are many existing utility functions
that you should use.that you should use.
––UEFI 2.0 has many DevicePath utilitiesUEFI 2.0 has many DevicePath utilities
––Framework has many utility Framework has many utility libslibs

37

Use EFI Driver Library FunctionsUse EFI Driver Library Functions

CHILD_DEVICE Child;

Child = EfiLibAllocateZeroPool (sizeof (CHILD_DEVICE));
if (Child == NULL) {

return EFI_OUT_OF_RESOURCES;
}

Library Functions Simplify Source CodeLibrary Functions Simplify Source Code
Library Functions May Reduce SizeLibrary Functions May Reduce Size

CHILD_DEVICE Child;

Status = gBS->AllocatePool (
EfiBootServicesData,
sizeof (CHILD_DEVICE),
&Child
);

if (EFI_ERROR (Status)) {
return Status;

}
gBS->SetMem (Child, sizeof (CHILD_DEVICE), 0);

OK

GOOD

38

CompressionCompression

EFI has built in decompression that can EFI has built in decompression that can
help anyone save space in their OpROM.help anyone save space in their OpROM.
The PCI bus driver will automatically The PCI bus driver will automatically
decompress any compressed driversdecompress any compressed drivers
The EFI Decompress protocol The EFI Decompress protocol
decompresses images into memory for decompresses images into memory for
runningrunning
Uses LZ77 and Huffman CodingUses LZ77 and Huffman Coding

See §19 of UEFI Specification

39

PortabilityPortability

Design for portability from the beginning:Design for portability from the beginning:
––DonDon’’t assume what platform the driver will run t assume what platform the driver will run

onon
––DonDon’’t assume what OS will loadt assume what OS will load
––Avoid assembly languageAvoid assembly language
––DonDon’’t directly access any chipset resourcest directly access any chipset resources

––All of these may seem to be ways to shorten All of these may seem to be ways to shorten
and ease initial EFI device driver development, and ease initial EFI device driver development,
but in the long run they will limit the portability but in the long run they will limit the portability
of the driver.of the driver.

40

More Portability TipsMore Portability Tips

Do Not Assume Max Number of ChildrenDo Not Assume Max Number of Children
Do Not Use Fixed Memory AddressesDo Not Use Fixed Memory Addresses
Do Not Use AssemblyDo Not Use Assembly
Do Not Use Floating Point ArithmeticDo Not Use Floating Point Arithmetic
––IAIA--64 does not always have it available.64 does not always have it available.
Some Minor EBC Porting ConsiderationsSome Minor EBC Porting Considerations
Bus Drivers Should Support Producing 1 Bus Drivers Should Support Producing 1
Child at a time if possible (improves boot Child at a time if possible (improves boot
performance)performance)

41

Sharing Code between OS driver and EFI Sharing Code between OS driver and EFI
driverdriver

DefinitionsDefinitions
–– Share identifiers and register informationShare identifiers and register information
InterfacesInterfaces

–– Use identical function prototypesUse identical function prototypes
Intermediate functionsIntermediate functions

–– Call into appropriate lower level functionsCall into appropriate lower level functions
LibraryLibrary

–– Set of functions compiled per environmentSet of functions compiled per environment

42

Sharing Files ExampleSharing Files Example

Intel network cardsIntel network cards
––http://sourceforge.net/projects/e1000http://sourceforge.net/projects/e1000
The e1000_hw.c/.h files are shared The e1000_hw.c/.h files are shared
between multiple environments including between multiple environments including
OS and firmware.OS and firmware.
This uses shared definitions and shared This uses shared definitions and shared
intermediate functions, with the lower intermediate functions, with the lower
level function added in the build process.level function added in the build process.

http://sourceforge.net/projects/e1000

43

SummarySummary

Use EFI Driver WriterUse EFI Driver Writer’’s Guide for UEFI 2.0s Guide for UEFI 2.0
–– Draft Version 0.94Draft Version 0.94

Implement and Test Native Driver FirstImplement and Test Native Driver First
Be aware of EBC Source Portability IssuesBe aware of EBC Source Portability Issues
–– No assembly or floating point supportNo assembly or floating point support

Call External Services for PerformanceCall External Services for Performance
–– UEFI Boot ServicesUEFI Boot Services
–– UEFI ProtocolsUEFI Protocols

Use EBC Debug Methods and EBC DebuggerUse EBC Debug Methods and EBC Debugger
Validate with Validate with SCTsSCTs, EFI Shell, and OS , EFI Shell, and OS
Install/BootInstall/Boot
Follow EBC Option ROM RecommendationsFollow EBC Option ROM Recommendations
–– EBC Images LastEBC Images Last
–– Use UEFI Compression to reduce sizeUse UEFI Compression to reduce size

45

DefinitionsDefinitions

EFI ImageEFI Image
–– Executable Image in a PE32 Image FormatExecutable Image in a PE32 Image Format

EFI DriverEFI Driver
–– EFI Image that Typically Manages Physical Devices EFI Image that Typically Manages Physical Devices
–– Many Types are PossibleMany Types are Possible

HandleHandle
–– Object Containing One or More ProtocolsObject Containing One or More Protocols

ProtocolProtocol
–– Object Containing Functions and DataObject Containing Functions and Data

ControllerController
–– Physical Device that is Managed by an EFI DriverPhysical Device that is Managed by an EFI Driver

EventEvent
–– Object that may be Signaled or Waited UponObject that may be Signaled or Waited Upon
–– Synchronous and Asynchronous NotificationsSynchronous and Asynchronous Notifications

46

UEFI Driver TypesUEFI Driver Types

Designing and Implementing EFI Drivers

EFI Images

Applications

Drivers
Service Drivers

OS Loaders

Initializing Drivers

Root Bridge
Drivers

EFI Driver Model

Device
Drivers

Bus
Drivers

Bus
Drivers

Device
Drivers

Hybrid
Drivers

47

Device DriverDevice Driver

Manages a Controller or Peripheral DeviceManages a Controller or Peripheral Device
Start() Does Not Create Any Child HandlesStart() Does Not Create Any Child Handles
Start() Produces One or More I/O Start() Produces One or More I/O
ProtocolsProtocols
––Installed onto the DeviceInstalled onto the Device’’s Controller Handles Controller Handle

Examples:Examples:
PCI Video AdaptersPCI Video Adapters
USB Host ControllersUSB Host Controllers
USB Keyboards / USB MiceUSB Keyboards / USB Mice
PS/2 Keyboards / PS/2 MicePS/2 Keyboards / PS/2 Mice

Drivers
Service Drivers

Initializing Drivers

Root Bridge
Drivers

EFI Driver Model

Device
Drivers

Bus
Drivers

Hybrid
Drivers

Designing and Implementing EFI Drivers

48

Bus DriverBus Driver

Manages and Enumerates a Bus ControllerManages and Enumerates a Bus Controller
Start() Creates One or More Child HandlesStart() Creates One or More Child Handles
Start() Produces Bus Specific I/O ProtocolsStart() Produces Bus Specific I/O Protocols
––Installed onto the BusInstalled onto the Bus’’s Child Handless Child Handles

Examples:Examples:
PCI Network Interface ControllersPCI Network Interface Controllers
Serial UART ControllersSerial UART Controllers

Designing and Implementing EFI Drivers
Drivers

Service Drivers

Initializing Drivers

Root Bridge
Drivers

EFI Driver Model

Device
Drivers

Bus
Drivers

Hybrid
Drivers

49

Hybrid DriverHybrid Driver

Manages and Enumerates a Bus ControllerManages and Enumerates a Bus Controller
Start() Creates One or More Child HandlesStart() Creates One or More Child Handles
Start() Produces Bus Specific I/O ProtocolsStart() Produces Bus Specific I/O Protocols
––Installed onto the BusInstalled onto the Bus’’s Controller Handles Controller Handle
––Installed onto BusInstalled onto Bus’’s Child Handless Child Handles

Examples:Examples:
PCI SCSI Host ControllersPCI SCSI Host Controllers
PCI Fiber Channel ControllersPCI Fiber Channel Controllers

Designing and Implementing EFI Drivers
Drivers

Service Drivers

Initializing Drivers

Root Bridge
Drivers

EFI Driver Model

Device
Drivers

Bus
Drivers

Hybrid
Drivers

50

Driver Design StepsDriver Design Steps

Determine Driver TypeDetermine Driver Type
Identify Consumed I/O ProtocolsIdentify Consumed I/O Protocols
Identify Produced I/O ProtocolsIdentify Produced I/O Protocols
Identify EFI Driver Model ProtocolsIdentify EFI Driver Model Protocols
Identify Additional Driver FeaturesIdentify Additional Driver Features
Identify Target PlatformsIdentify Target Platforms
––IAIA--3232
––IntelIntel®® 6464
––Itanium Processor Family (IAItanium Processor Family (IA--64)64)
––EFI Byte Code (EBC)EFI Byte Code (EBC)

Designing and Implementing EFI Drivers

51

Driver Design ChecklistDriver Design Checklist

Driver TypeDriver Type

I/O Protocols ConsumedI/O Protocols Consumed

I/O Protocols ProducedI/O Protocols Produced

Driver BindingDriver Binding
Component NameComponent Name
Driver ConfigurationDriver Configuration
Driver DiagnosticsDriver Diagnostics
UnloadableUnloadable
Exit Boot Services EventExit Boot Services Event
RuntimeRuntime

Set Virtual Address Map EventSet Virtual Address Map EventSet Virtual Address Map Event

GOPGOP SCSI Pass ThruSCSI Pass Thru
Block I/OBlock I/O

PCI I/OPCI I/O
Device PathDevice Path

PCI I/OPCI I/O
Device PathDevice Path

DeviceDevice HybridHybrid

sometimessometimes sometimessometimes

PCI PCI
VideoVideo

PCIPCI
RAIDRAID

Designing and Implementing EFI Drivers

	Writing and Debugging EBC Driver with Tips
	Agenda
	Motivation and Goals
	Options
	Agenda
	Natural Addressing
	Executing EBC Images
	EBC Images in PCI Option ROMs
	Agenda
	When to use EBC
	EBC Development Checklist
	EBC Development Environments
	EBC Target Environments
	Driver Implementation Steps
	Portability Considerations
	Common EBC Source Porting Issues
	Common EBC Execution Issues
	Agenda
	Testing Recommendations
	Debug Methods
	Debug Macros
	Debug Macros
	When DEBUG() is not Available
	When DEBUG() is not Available
	When DEBUG() is not Available
	EBC Debugger Demo
	Agenda
	EBC Performance Guidelines
	EBC Performance Guidelines
	PCI Device Drivers�
	PCI Device Drivers – Start()�
	PCI Device Drivers – Stop()�
	Memory Tips
	Preventing Alignment Faults�
	Preventing Alignment Faults�
	Tips for existing functions
	Use EFI Driver Library Functions�
	Compression
	Portability
	More Portability Tips
	Sharing Code between OS driver and EFI driver
	Sharing Files Example
	Summary
	Definitions
	UEFI Driver Types
	Device Driver
	Bus Driver
	Hybrid Driver
	Driver Design Steps
	Driver Design Checklist

